Iterative methods for zero points of accretive operators in Banach spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative methods for zero points of accretive operators in Banach spaces

The purpose of this paper is to consider the problem of approximating zero points of accretive operators. We introduce and analysis Mann-type iterative algorithm with errors and Halpern-type iterative algorithms with errors. Weak and strong convergence theorems are established in a real Banach space. As applications, we consider the problem of approximating a minimizer of a proper lower semicon...

متن کامل

Some iterative method for finding a common zero of a finite family of accretive operators in Banach spaces

‎The purpose of this paper is to introduce a new mapping for a finite‎ ‎family of accretive operators and introduce an iterative algorithm‎ ‎for finding a common zero of a finite family of accretive operators‎ ‎in a real reflexive strictly convex Banach space which has a‎ ‎uniformly G^ateaux differentiable norm and admits the duality‎ ‎mapping $j_{varphi}$‎, ‎where $varphi$ is a gauge function ...

متن کامل

Iterative Approximations of Zeroes for Accretive Operators in Banach Spaces

In this paper, we introduce and study a new iterative algorithm for approximating zeroes of accretive operators in Banach spaces.

متن کامل

some iterative method for finding a common zero of a finite family of accretive operators in banach spaces

‎the purpose of this paper is to introduce a new mapping for a finite‎ ‎family of accretive operators and introduce an iterative algorithm‎ ‎for finding a common zero of a finite family of accretive operators‎ ‎in a real reflexive strictly convex banach space which has a‎ ‎uniformly g^ateaux differentiable norm and admits the duality‎ ‎mapping $j_{varphi}$‎, ‎where $varphi$ is a gauge function ...

متن کامل

Approximating Zero Points of Accretive Operators with Compact Domains in General Banach Spaces

Let E be a real Banach space, let C be a closed convex subset of E, let T be a nonexpansive mapping of C into itself, that is, ‖Tx−Ty‖ ≤ ‖x− y‖ for each x, y ∈ C, and let A⊂ E×E be an accretive operator. For r > 0, we denote by Jr the resolvent of A, that is, Jr = (I + rA)−1. The problem of finding a solution u∈ E such that 0∈ Au has been investigated by many authors; for example, see [3, 4, 7,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Analele Universitatii "Ovidius" Constanta - Seria Matematica

سال: 2012

ISSN: 1844-0835

DOI: 10.2478/v10309-012-0022-7